Preparation of UH_3 by the reaction of U with NH_3 or with a mixture of H_2 and N_2

Masayuki Hirota, Masahiro Katsura, Hiroyuki Takahashi and Masanobu Miyake Department of Nuclear Engineering, Faculty of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565 (Japan)

Abstract

To examine how a high nitrogen activity and high hydrogen activity can be obtained by keeping the extent of dissociation of NH₃ below its dissociation equilibrium, reactions of U with static NH₃ were carried out at 250 °C. The formation of N-rich U_2N_{3+x} and that of UH₃ are discussed from a thermodynamic point of view. The experimental results suggest, however, that the formation of UH₃ must be ascribed to a much lower activation energy for its formation.

1. Introduction

There are reports on the formation of U_2N_{3+x} ($0 \le x \le 1$) by the reaction of U or UH₃ with static NH₃ [1–3]. Tagawa [1] found that the reaction between UH₃ and static NH₃ begins at 150 °C, and becomes rapid above 350 °C, while Alire and McCrary [2] prepared U_2N_{3+x} by the reaction of powdered U with ND₃. Katsura and Serizawa [3] ascribed the formation of α - U_2N_{3+x} by the reaction of U with static NH₃ at 250 and 300 °C to an enormously high nitrogen activity a_N of the gas phase, arising from the suppression of the dissociation of NH₃ into N₂ and H₂ well below its equilibrium dissociation. However, a small amount of UH₃ was present in the final reaction products, together with U_2N_{3+x} .

By keeping the extent of dissociation of NH_3 into N_2 and H_2 below the equilibrium dissociation degree at the temperature in question, gaseous mixtures of N_2 , H_2 and unstable NH_3 can be prepared [4]. These mixtures possess high nitrogen and hydrogen activities $(a_N \text{ and } a_H)$.

In dealing with the reactions of metals with NH_3 at low temperatures, the hydriding ability of unstable NH_3 must be taken into account. To examine the role of the hydriding ability of NH_3 in reactions between metals and NH_3 , the reactions between U chips and static NH_3 , and those of U powder with NH_3 were carried out at 250 °C. In addition, the reaction of U with an $N_2 + H_2$ mixture was carried out at 100 °C.

2. Experimental details

The apparatus and materials used in this work were essentially the same as those used in the previous work [3, 5]. U chips or powdered U was exposed to NH₃ at 250 °C. The total pressure P_{total} and the partial pressures of NH₃, N₂ and H₂ ($P_{\text{NH}3}$, $P_{\text{N}2}$, and $P_{\text{H}2}$) were measured as functions of the reaction time. Powdered U was treated in a gaseous mixture of N₂+H₂ at 100 °C for 122 h. X-ray diffraction analysis of the solid products was carried out using a diffractometer.

3. Results and discussion

Figure 1(a) shows the variations in P_{total} , P_{NH_3} , P_{H_2} and P_{N_2} with time, during the reaction of massive U (2.57 g) with NH₃ (run 1). P_{NH_3} continues to decrease and P_{H_2} continues to increase until a stationary state is reached, where the gas phase consists practically of only H₂ and any appreciable change in P_{H_2} is not observable, suggesting that practically all the NH₃ initially admitted into the system has been consumed. (Gradual decreases in P_{H_2} and P_{total} may be attributable to the samplings made at intervals for the gas analysis.)

The results of the reaction of powdered U (0.27 g) with NH₃ (run 2) are shown in Fig. 1(b). These pressure variation curves show similar tendencies to those in Fig. 1(a); namely, $P_{\rm NH_3}$ decreases and $P_{\rm H_2}$ increases, and a stationary state is eventually reached. However,

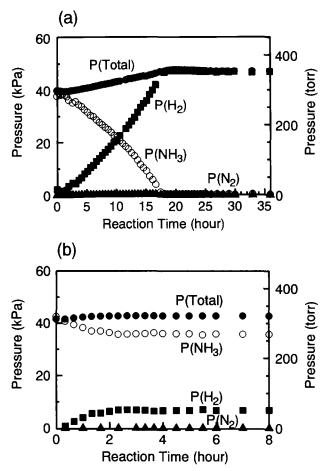


Fig. 1. Variations in P_{total} , P_{NH_3} , P_{H_2} and P_{N_2} with time; (a) during the reaction of massive U with NH₃ at 250 °C, and (b) those during the reaction of powdered U with NH₃ at 250 °C.

the result of run 2 (Fig. 1(b)) differs from that of run 1 (Fig. 1(a)), in that a large amount of NH_3 still remains in the system, presumably as a result of the smaller amount of U used in run 2 than that in run 1. The results shown in Fig. 1(b) also suggest that, at 250 °C, U_2N_{3+x} does not function as an effective catalyst for NH_3 decomposition.

X-ray diffraction patterns for the final solid products are shown in Figs. 2(a) and 2(b). (The N:U ratio of U_2N_{3+x} , calculated from the lattice parameter of the product from run 1, is about 1.70 and that for run 2 is about 1.80). Although U_2N_{3+x} is the major phase, a considerable amount of UH₃ is also present. (In the case of the reaction of massive U with NH₃, peaks corresponding to UN can be observed.)

The nitrogen activity a_N and hydrogen activity a_H of gaseous mixtures of unstable NH₃, H₂ and N₂ are given respectively by

$$a_{\rm N} = (1/K_{\rm P})(P_{\rm NH_3}/P_{\rm H_2}^{3/2}) \tag{1}$$

$$a_{\rm H} = \{ (1/K_{\rm P}) (P_{\rm NH_3}/P_{\rm N_2}^{1/2}) \}^{1/3}$$
 (2)

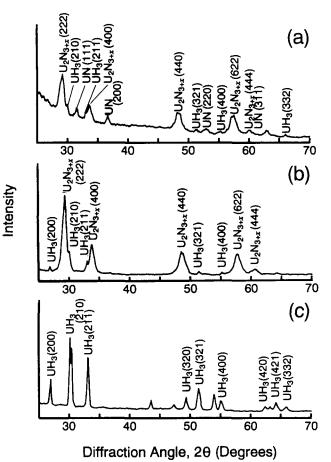


Fig. 2. X-ray diffraction patterns for the products of the reactions of (a) U (ingot) and NH₃ at 250 °C, (b) U (powder) and NH₃ at 250 °C, and (c) U (powder) and N_2/H_2 (=1/3) at 100 °C.

where $K_{\rm P}$ is the equilibrium constant for

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 = NH_3$$

and the respective partial pressures are expressed in atmospheric units [4].

The values for a_N and a_H of the gas phase, calculated from the data given in Fig. 1 using eqns. (1) and (2), are given as functions of time for the two reactions above (see Fig. 3). In either case, extremely high a_N values (of the order of magnitude 10³) are realized in the early stage of the run, and a_N continues to decrease rapidly until a constant a_N value is obtained. In the case of run 1, a_N drops to low values $(7-8\times10^{-2})$ in the final stage, which correspond to $P_{N_2} = 0.005-0.0064$ bar. In contrast, the a_N value remains at the order of 10^2 in the later stage of run 2 ($P_{N_2} = 10^4$ bar).

The existence of UN, together with U_2N_{3+x} in run 1 might be attributable to an a_N value much smaller than that in run 2. The higher a_N value in run 2 may be responsible for the higher N:U ratio of α -U₂N_{3+x} (N:U \approx 1.80 was estimated for α -U₂N_{3+x}, obtained in

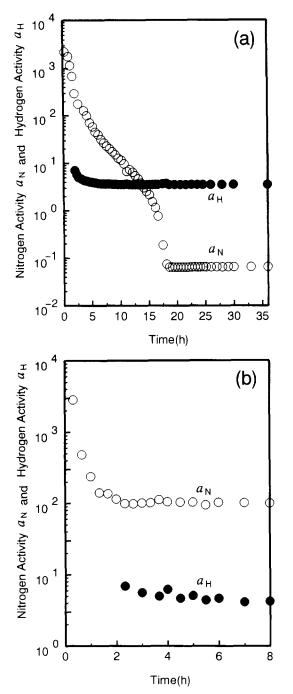


Fig. 3. Variations of nitrogen activity a_N and hydrogen activity a_H with time, (a) during the reaction of massive U with NH₃ at 250 °C, and (b) during the reaction of powdered U with NH₃ at 250 °C.

run 2). However, the $a_{\rm H}$ values obtained in the final stage of runs 1 and 2 do not differ substantially, ranging from 4 to 6, which corresponds to $P_{\rm H_2}$ = 15-35 bar. It

is also likely that a high $a_{\rm H}$ value is obtained in the early stage of the runs. Since the $P_{\rm N2}$ values in this stage are small, the estimation of $\alpha_{\rm H}$ from the data has not been performed.

The free energy change for

$$2UH_3 + \{(3+x)/2\}N_2 = U_2N_{3+x} + 3H_2$$

calculated using the literature thermodynamic data for U_2N_{3+x} and UH_3 [6], suggests that, from a thermodynamic viewpoint, UH_3 must have been converted to U_2N_{3+x} in the gas phase examined in run 2. Thus, the presence of UH_3 in the products may suggest that the activation energy for $2UH_3 + \{(3+x)/2\}N_2 = U_2N_{3+x} + 3H_2$ is very high at low temperatures (250 °C or less).

To examine how easily UH₃ is formed compared with α -U₂N_{3+x}, the reaction of U powder and an H₂+N₂ mixture ($P_{H_2} = 68$ kPa, $P_{N_2} = 23$ kPa; reaction time, 122 h) was performed at 100 °C. The free energy change for 2UH₃ + {(3+x)/2}N₂ = U₂N_{3+x} + 3H₂ under this condition amounts to about -560 kJ mol⁻¹, suggesting that U₂N_{3+x} is much more stable than UH₃. As can be seen from the X-ray diffraction data for the product (Fig. 2(c)), UH₃ was formed, indicating that UH₃ can be formed at a temperature as low as 100 °C.

4. Concluding remarks

Variations in the a_N and a_H values with time are calculated using the P_{NH_3} , P_{H_2} and P_{N_2} data obtained during the reaction of U with NH₃ at 250 °C. Under suitable experimental conditions, high nitrogen activities of the order of 10³ can be realized by using NH₃: the gas phase also possesses high hydrogen activities. Although the reaction of U+NH₃ leads to the formation of α -U₂N_{3+x} at temperatures as low as 250 °C, owing to very high a_N values, UH₃ is also formed. The formation of UH₃ must be attributed to a very low activation energy for the reaction U + $\frac{3}{2}H_2$ =UH₃.

References

- 1 H. Tagawa, J. Nucl. Mater., 51 (1974) 78.
- 2 R.M. Alire and J.H. McCrary, J. Chem. Phys., 45 (1966) 3958.
- 3 M. Katsura and H. Serizawa, J. Alloys Comp, 196 (1993) 191.
- 4 M. Katsura, J. Alloys Comp., 182 (1992) 91.
- 5 M. Miyake, M. Hirota, H. Takahashi and M. Katsura, J. Alloys Comp., 213/214 (1994) 444.
- 6 I. Grenthe, J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C. Nguyen-Trung and H. Wanner, in H. Wanner and I. Forest (eds.), *Chemical Thermodynamics of Uranium*, North-Holland, Amsterdam, 1992, pp. 29–43.